Abstract

As the inner core of crash box, the porous structure could cushion impact load through its own deformation. The aims of this study were to propose a series of Voronoi porous structures with tunable Poisson's ratio (VP-VPS) by using the periodic array of unit cells based on Voronoi-Tessellation and to develop crash boxes filled with porous structures for strong crashworthiness and high energy absorption. VP-VPS structures through the periodic arrays of unit cells were constructed according to 4 independent unit cell design factors. The quasi-static and dynamic compressive mechanical responses of VP-VPS structures prepared by selective laser melting (SLM) were studied through the combinations of mechanical test and simulation. Relationships between VP-VPS unit cell design factors and mechanical properties of structures were determined by establishing regression equations using the response surface method (RSM). Finally, the energy absorption of new crash boxes filled with VP-VPS structures was investigated through simulation. Results showed that VP-VPS structures had high load-bearing capacities and energy absorption under quasi-static and dynamic compressive conditions. Regression equations based on RSM could well predict mechanical properties of structures. The mechanical properties of VP-VPS structures were enhanced with the increase of global strain rate, which showed different deformation modes at low and high global strain rates. Compared with typical crash boxes filled with negative Poisson's ratio (NPR) inner cores, new type VP-VPS crash boxes had stronger impact resistance and higher energy absorption. This investigation provided a feasible design solution and theoretical basis for the construction and engineering application of impact resistance protective structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call