Abstract

In this study, a deep foundation pit project of Nanlishi Road in the Xicheng District of Beijing was taken as the engineering background. Based on the monitoring method of that project and referring to its design scheme principle, this study applied advanced monitoring technology methods such as anchor axial force and deep horizontal displacement monitoring. The mechanism of pile–soil interaction, the stress change and deformation law of the three-pile and two-anchor support systems of deep foundation pits, and the stability of deep foundation pit support in an anhydrous sandy pebble stratum, were studied in depth. Results show: The axial force of the anchor rod had great loss in the early stage of prestressed tension locking; with the deepening of foundation pit excavation, the lateral pressure of stratum increased gradually, and the prestress of the anchor increased until the end of excavation, where it tended to be stable; the maximum horizontal displacement of the pile was smaller than the design value, and the maximum horizontal displacement was not at the top of the pile; the axial force of the prestressed anchor varied with the formation pressure and surrounding load; the tension of the lower anchor had a certain influence on the axial force of the upper anchor. Except for the east side of the foundation pit, the anchors of the first layer were all stabilized at about 140 kN, and the anchors of the second layer were stabilized at about 150 kN. The third row of anchors on the north side was stable at around 170 kN. By analyzing the variation law of stress and deformation of the supporting structure of the foundation pit, the timeliness of the data during the construction process was improved, and a reference is provided for the informatization construction of related working conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call