Abstract

Conductor casing jetting technique has been increasingly applied in deepwater drilling. The insight into the jetting excavation mechanisms is critical in guiding a successful conductor casing jetting operation. The real- time continuous jet excavation process is simulated with the volume of fluid (VOF) multiphase method of CFD (Computational Fluid Dynamics) ANSYS Fluent calculation software in the current study. The cohesive soil is modelled by using a kind of viscous fluid with Herschel-Bulkley model. In addition, a laboratory half round nozzle jet excavation test is designed for verification by comparison of the observed jet excavation profile with the numerical results. The sensitivity parameters affecting the conductor jetting excavation mechanism in cohesive soil are thus investigated. It is found that the application of Herschel-Bulkley (HB) model for cohesive soil and the VOF method of Fluent can provide a good simulation of jet excavation process. The maximum excavation depth can be determined by the undrained ultimate bearing capacity of the circular foundation with a bearing capacity factor of 6.7. The nozzle position, jet velocity and soil strength have significantly influence on the depth and width of the jet excavation profile in conductor oblique jet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call