Abstract
Extreme learning machine (ELM), a relatively novel machine learning algorithm for single hidden layer feed-forward neural networks (SLFNs), has been shown competitive performance in simple structure and superior training speed. To improve the effectiveness of ELM for dealing with noisy datasets, a deep structure of ELM, short for DS-ELM, is proposed in this paper. DS-ELM contains three level networks (actually contains three nets ): the first level network is trained by auto-associative neural network (AANN) aim to filter out noise as well as reduce dimension when necessary; the second level network is another AANN net aim to fix the input weights and bias of ELM; and the last level network is ELM. Experiments on four noisy datasets are carried out to examine the new proposed DS-ELM algorithm. And the results show that DS-ELM has higher performance than ELM when dealing with noisy data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.