Abstract

Aluminum foam with initial crack, which has a closed cell form adhesively bonded, is studied to compare and analyze the crack propagation behavior by using both experimental and finite element analysis techniques. The specimen is loaded in Mode I type of fracture as 15 mm/min speed of a displacement control method. The experimental results were used to accommodate the finite element analysis performed with commercial software ABAQUS 6.10. First, using a video recording, five steps of experiment were selected at random and then the energy release rate was calculated. The estimated energy release rate was then used as fracture energy into the finite element analysis. Comparing the experimental axial load-displacement graphs and the finite element analysis results, roughly equivalent peak values were observed in the cohesive strength of the aluminum foam double cantilever beam. However, force versus displacement patterns showed somewhat different: little deformation was observed in aluminum foam, whereas adhesive parts in double cantilever beam were significantly deformed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call