Abstract
The phenomenon of oil film oscillation and frequency locked may occur in a healthy rotor system which is supported by sliding bearing. The dynamic behavior of the rotor system with misalignment and rubbing coupling fault supported by sliding bearing is also very complex. To solve the problem of fault diagnosis in this case, a dynamical model of rotor system is proposed in this paper. The short bearing oil film force, the equivalent misalignment moment, and Hertz contact theory are applied to establish the model. For rubbing faults, the Augmented Lagrange method is used to deal with the contact constraints to ensure that the boundary penetration depth is within the specified tolerance range. Furthermore, the dynamic behavior of the faulty rotor system under different rubbing stiffness conditions is analyzed in this paper. Meanwhile, the fault signal is divided into equal-band by the wavelet basis functions to find out the fault frequency band of the rotor system. Finally, the accuracy of the simulation study is verified by measurements obtained from the faulty rotor test platform. The following findings are made in this paper. The rubbing fault is dominant in the coupling fault. With the increasing of the speed, the frequency components of the system are dominated by high frequency. The double frequency is the main fault feature frequency band. It can be seen that the rotor system moves gradually from a quasi-periodic state into chaos due to the Lyapunov exponent. At the same time, due to the effects of misalignment moment and friction force, the phenomenon of oil film instability is partially suppressed. The lagging of the first and second-order oil film oscillations occurs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.