Abstract

A gas-liquid-solid three-phase coupling dynamic model is established using lattice Boltzmann method (LBM). Interaction between rising bubble and complex solid walls at the same scale is studied. Firstly, based on the viscous fluid theory, a group of lattice Boltzmann equations are developed to describe the gas-liquid two-phase campaign by considering the viscosity, surface tension, and gravity in the form of a LB discrete body force. At the same time, combined with the finite difference scheme, the half-way bounce back model in LBM is adopted to deal with the solid boundary condition. Then, under the conditions of different feature size ratios, the coupling characteristics between bubbles and plane wall, taking into consideration the effect of boundaries and curved wall, are studied using the newly built model. Results show that both the solid wall condition and the feature size ratio have significant nonlinear effects on bubble movement and topology changes. Finally, the effect of fluid properties on the coupling regularity of bubbles and complex walls is researched.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.