Abstract

The levitation stability of maglev trains is determined by the interaction of vehicle-bridge dynamic characteristics. The state change of vehicle and track beam will affect the dynamic performance of maglev trains. In order to study the levitation characteristics of maglev trains, a coupled vehicle-bridge dynamic model based on an elastic beam was established to study the influence of beam stiffness and vehicle load on the dynamic performance of the maglev system. In the form of numerical simulation, the time-domain characteristics of key characteristic variables, such as levitation gap and vertical deflection of track beam, under different working conditions of stiffness and load were analyzed. The simulation shows that the levitation system can smoothly converge to the stable value under each working condition, which indicates the rationality of the field test. Based on the Shanghai Lingang medium-and-low-speed maglev test line, the maglev test was carried out, and the time-domain and frequency-domain characteristics of the above key variables were analyzed based on the measured data. The results show that the fluctuation of the levitation gap was affected by load and stiffness, and the law was consistent with the simulation results. The increase in load or the decrease in beam stiffness would lead to an increase in vertical deflection and vibration of the track beam. However, the train could still maintain good levitation performance under the above extreme conditions, which verified the reliability of the levitation system and the correctness of the simulation model. The conclusion of this paper can provide a reference for the design of the levitation system and track line of medium-and-low-speed maglev train.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call