Abstract

Hot-stamping steel is a type of high-strength steel that is mainly used in key safety components such as the front and rear bumpers, A-pillars, and B-pillars of vehicles. There are two methods of producing hot-stamping steel, i.e., the traditional process and the near net shape of compact strip production (CSP) process. To assess the potential risks of producing hot-stamping steel using CSP, the microstructure and mechanical properties, and especially the corrosion behavior were focused on between the traditional and CSP processes. The original microstructure of hot-stamping steel produced by the traditional process and the CSP process is different. After quenching, the microstructures transform into full martensite, and their mechanical properties meet the 1500 MPa grade. Corrosion tests showed that the faster the quenching speeds, the smaller the corrosion rate of the steel. The corrosion current density changes from 15 to 8.6 μA·cm-2. The corrosion resistance of hot-stamping steel produced by the CSP process is slightly better than that of traditional processes, mainly since the inclusion size and distribution density of CSP-produced steel were both smaller than those of the traditional process. The reduction of inclusions reduces the number of corrosion sites and improves the corrosion resistance of steel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.