Abstract

A type of hybrid electromagnetic suspension is proposed in this study to improve the reliability of a conventional active electromagnetic suspension. A motor with the proposed hybrid electromagnetic suspension linear can regenerate the vibration energy; the coordination relationship between the energy regeneration and the vibration isolation of the hybrid electromagnetic suspension is studied. A dynamic model is established, and a modified skyhook control strategy is designed. A passive energy regeneration control system and an active control system are developed. The effect of the damping on the energy regeneration and the vibration isolation is discussed. The best damping, which can consider the energy regeneration and the vibration isolation simultaneously, is determined. Comparative simulations of a passive suspension, a hybrid electromagnetic suspension and an active electromagnetic suspension are carried out, and the results verify the effectiveness of the control strategy. Finally, an energy regeneration experiment and an isolation comparative experiment of a quarter-suspension are conducted. The findings show that the hybrid electromagnetic suspension with a modified skyhook control strategy can efficiently facilitate coordination between the energy regeneration and the vibration isolation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call