Abstract

BackgroundEnrichment culture was applied to obtain microbial consortium from activated sludge samples collected from biodegradation system, a chemical fiber plant in Hebei Province, China. Bacterial composition and community dynamic variation were assessed employing denaturing gradient gel electrophoresis fingerprinting technology based on amplified 16S rRNA genes in the entire process of enrichment culture for viscose fiber wastewater.ResultsFour bacteria named as VF01, VF02, VF03, and VF04 were isolated from the microbial consortium adopting the spray-plate method. The DNA bands of these four bacteria were corresponded to the predominant DNA bands in the electrophoresis pattern. VF01, VF02, VF03, and VF04 were phylogenetically closed to Bacillus licheniformis, Bacillus subtilis, Paracoccus tibetensis, and Pseudomonas sp. by sequence analysis, respectively. The degradation effects for CODCr of single isolated strain, mixed strains, and microbial consortium (VF) originally screened from viscose fiber wastewater were determined. The degradation ability was as follows: microbial consortium (VF) > mixed strains > single isolated strain. Microbial consortium (VF) showed the optimum degradation rate of CODCr of 87% on 14th day. Degradation of pollutants sped up by bio-augmentation of four strains. The molecular weight distribution of organic matter showed that viscose fiber wastewater contained a certain amount of large molecular organic matter, which could be decomposed into smaller molecular substances by microbial consortium (VF).ConclusionsThe microbial consortium (VF) obtained from enrichment culture exhibited great potential for CODCr degradation. The screened strains had bio-augmentation functions and the addition of a mixture of four bacteria could speed up the degradation rate of pollutants.

Highlights

  • Enrichment culture was applied to obtain microbial consortium from activated sludge samples col‐ lected from biodegradation system, a chemical fiber plant in Hebei Province, China

  • The purpose of this paper was to (1) apply the viscose fiber wastewater enrichment strategy to establish viscose fiber wastewater degrading communities to enhance biodegradation of viscose fiber wastewater; (2) analyze the structure changes of bacterial community in viscose fiber wastewater by PCR–DGGE; (3) detect the biodegradability of bacterial consortium gathered from viscose fiber wastewater

  • DGGE analysis of community structure Ten bands were observed during enrichment process, indicating that the dynamic variation of bacterial community was complex

Read more

Summary

Introduction

Enrichment culture was applied to obtain microbial consortium from activated sludge samples col‐ lected from biodegradation system, a chemical fiber plant in Hebei Province, China. Viscose fiber exhibits good physical, mechanical, and servicing qualities, and its status is next to polyester in chemical fiber industry (Lin 2000). A huge volume of wastewater has been produced in chemical industry which is responsible for serious environmental problems. Viscose fiber wastewater contains acid and alkaline wastewater. The mixed wastewater of viscose fiber is mainly used in the industrial degradation. A large number of cellulose precipitate was formed after acid and alkaline wastewater were mixed (pH = 2–3) in the industrial degradation. No microorganism has been reported that can directly degrade viscose fiber wastewater, due to the complex composition of viscose fiber wastewater, most of which are cellulose, lignin, organic pollutants, and other large molecular substances (Liang et al 2009; Vikman et al 2002). It has been observed that few microorganisms can degrade macromolecular substance under high salinity condition (Kanaly and Harayama 2000)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call