Abstract

Synchrotron radiation offers important advantages with the use of tunable vacuum ultraviolet (VUV) lasers for molecular beam sampling mass spectrometry (MBMS). These advantages include superior signal-to-noise, soft ionization, and access to photon energies outside the limited tuning ranges of current VUV laser sources. Combining MBMS with tunable synchrotron radiation photoionization, two similar types of fuels, gasoline/oxygen and gasoline/MTBE/oxygen in low-pressure premixed laminar flame were investigated. Photoionization efficiency (PIE) measurements were used to identify the intermediates isomers within flame. The two combustion processes are discussed by comparing the intermediates and their spatial profiles within the two kinds of flame mentioned above.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.