Abstract
The design of structure against progressive collapse has tended towards more quantitative design where utilizing catenary action becomes essential. In this paper, a single internal column removal test was conducted for a 1/3 scale 4-bay steel frame with concrete-filled steel tubular (CFST) columns. The anti-collapse mechanism of the frame under the scenario of column loss is discussed. Both FE model and simplified analytical model are developed to investigate the behavior of steel frame with CFST columns in resisting progressive collapse. The accuracy of the two models is verified through the experimental results. The anti-collapse measures of the proposed model are sensitive to the modeling techniques used to simulate the CFST columns. A method based on the energy equivalence is used to evaluate the dynamic behavior of the frame. The results show that the DAF (dynamic amplification factor) value of 2.0 which is recommended by DoD provision in linear static analysis is reasonable. However the mobilization of “catenary action” which is not considered in DoD provision would increase the DAF value as currently given in DoD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.