Abstract

To explore the mechanism of boiling bubble dynamics in narrow channels, two types of channels are investigated which have I- and Z-shaped with width of 2 mm. Using VOF model and self-programming, the whole flow field is simulated with two different kinds of media, namely, water and ethanol. The influence of wall contact angle on the process of bubble generating and growth is studied, and the relationship between different channel shapes and the pressure drop is also investigated taking into account the effects of gravity, viscosity, surface tension and wall adhesion. The bubble generation, growth and departure processes are analyzed through numerical simulation and self-programming, and the influence of interface movements and changes on internal pressure difference and average surface heat transfer coefficient is investigated by using geometry reconstruction and interface tracking. It is found that wall contact angle has a great influence on the morphology of bubble. The smaller the wall contact angles are, the more round the bubbles are, and the less time the bubbles take to depart from the wall. The variation of contact angle also has effect upon the heat transfer coefficient. The greater the wall contact angle is, the larger the bubble-covered area is, thus the wall thermal resistance gets higher, and bubble nucleation is suppressed, and the heat transfer coefficient becomes lower. The role of surface tension in the process of boiling heat transfer is much more important than the gravity in narrow channels. The generation of bubbles dramatically disturbs the boundary layer, and the bubble bottom micro-layer can enhance the heat transfer. The heat transfer coefficient of Z-shaped channels is larger than that of I-shaped ones, while the pressure drop of the former is obviously higher. In addition, surface tension and viscosity significantly impact the pressure drop of boiling system, and different specific heat and boiling point values result in different heat transfer coefficients. The simulation results in this paper match well with the experimental data revealed in other sources, both show that the heat transfer coefficient of water is higher than that of ethanol and Z-shaped channels have better heat transfer capability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call