Abstract

Microscale laser shock peening (μLSP) can generate beneficial compressive stress distribution in the targets, as the used beam diameter in μLSP is at the order of micron equivalent with grain size, the treated material must be considered as anisotropic and inhomogeneous, this causes an asymmetrical distribution of residual stress. In this paper, shape factor σSF was introduced and defined to characterize the asymmetrical distribution of stress, optimum conditions of factors and the influence degree were explored based on Taguchi design with the optimal object of stress characterization values. The results show that shape factor is a significant characteristic of residual stress induced by μLSP, crystal orientation is the most important influence factor, but laser energy and peening number have significant influence on stress characterization values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.