Abstract

As a new gas-phase synthesis method for the production of nanosize powders, the wire electrical explosion method has the advantages of high energy efficiency and high product purity through production under pure inert gas conditions and has been applied to the continuous industrial production of nanopowders. In this paper, an experimental device based on the electrical explosion of metallic wires for nanopowder production and collection is designed and built. Also, aluminum nanopowders were produced by electrically exploding an aluminum wire and collected by the microporous membrane filter successfully under different pressures of argon gas. Moreover, the influence of the argon gas pressure on the characteristics of the aluminum nanopowders was analyzed by a transmission electron microscope. The results showed that the particle shape, size, and distribution of the aluminum nanopowders could be controlled by the pressure of argon gas. The aluminum nanoparticles produced in the high-pressure argon gas had better spherical particle shape; meanwhile, the count mean diameter of the aluminum nanopowders increased obviously with the rise of the argon gas pressure. A higher pressure of argon gas could broaden the range of the aluminum nanoparticle size distribution evidently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call