Abstract

The aim of this study was to quantify the environmental impacts of dams, used for the control of riverine water resources, through life-cycle assessment techniques. The studied pneumatic and upright rubber dams had sizes of 500 mm (H) × 15,000 mm (L) and 2,000 mm (H) × 15,000 mm (L), respectively. The characterization values of the dams were compared in view of global warming. If the pneumatic and upright rubber dams both had sizes of 500 mm (H) × 15,000 mm (L), they would emit 5.365E + 05 kg CO2-eq and 5.441E + 055 kg CO2-eq, respectively. Meanwhile, if they both had sizes of 2,000 mm (H) × 15,000 mm (L), they would emit 2.193E + 06 kg CO2-eq and 2.094E + 06 kg CO2-eq, respectively.These results indicated that the environmental impact of dams can be strongly influenced by their size and construction method. In particular, their operating energy and the characteristics of their raw and subsidiary materials were the highest-ranked environmental impact factors in our sensitivity analysis. Therefore, in order to reduce greenhouse gas emissions, the environmental impact of river structures with a relatively long lifetime should be pre-evaluated when their construction is being planned. Keywords: Life Cycle Assessment, Rubber dam, Global Warming, Environmental Impacts

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.