Abstract

Based on forty-one years observational data (1960-2000) from seventies weather stations, we analyze the characteristics of climate changes in winter growing season that is defined from November to April the next year. Supported by Geographical Information System (GIS) techniques, relative models are built between climate factors in winter growing season and heights above the sea level. In the context of recent decades climate conditions and assumed climate warming in the future, Climate Potential Productivity (CPP) for five winters crops are calculated, with making CPP distribution maps also. The features of climate changes in winter growing season in recent 41 years can be expressed as increases of mean temperature and precipitation and decrease of sunshine hours, the case appearing especially in 1990's. Temperature is a crucial factor in CPP model. Climate warming can improve the CPP. When the mean temperature increase 0.5°C, 1.0°C, 1.5°C and 2.0°C with unchangeable of other factors, the CPP will increase by 2.1%, 4.1%, 6.3%, and 8.3%. For the proportions of actual field per unit area to CPP for five winter crops are only 14% to 21%, it is beneficial to utilize winter climate resources rationally and increase crop's field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call