Abstract

CdSe is a II-VI group semiconducting material with optimum bulk band gap of 1.74eV. It is a promising material due to its wide range of technological applications in optoelectronics devices. CdSe nanoparticles have been synthesized at different temperatures starting from Room temperature to 80°C using appropriate precursor solutions containing Cadmium acetate, Triethanolamine (TEA), Ammonia and Sodium selenosulphate. The pH of Solution was around 10.50 ± 0.10 during synthesis. We confirmed the elemental analysis by Energy Dispersive X-ray Analysis (EDAX) and X-ray Photoelectron Spectroscopy (XPS) technique. X-Ray Diffraction (XRD) studies shows that the synthesized nanoparticles belonged to cubic phase with crystallite size lying between 2nm-4nm. The effect of temperature on particle size, lattice parameter, density of dislocation and strain were investigated. Blue shift of 103nm to125nm has been observed from optical absorption spectra and raman measurements performed at room temperature using He-Ne laser (632nm, 5mW) showed the presence of longitudinal optical phonon modes. Photoluminescence (PL) studies shows a shift of 30nm when compared with the bulk PL emission peak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.