Abstract

To address the problem of low integration and efficiency of reverse osmosis desalination system, an energy-recovery type incurve multiple acting pump is developed with integrated functions of a high-pressure pump, energy recovery device and booster pump. In order to determine its flow range and suppress cavitation generation, a mathematical model of the port plate is established, combining the realizable k-ɛ turbulence model and the Schnerr-Sauer cavitation model to obtain the internal flow field characteristics of the port plate. The effects of different rotational speeds and inlet pressures on cavitation were analyzed to obtain the gas volume fraction distribution rules. The design is based on the pressure and mass flow monitoring test device to verify the numerical calculation results. The results show that the experimental and simulation data match accurately, and with the increase in speed and the decrease in inlet pressure, the cavitation phenomenon becomes serious and the flow coefficient is reduced. The optimal working speed of the pump in this paper is 520 r/min and the output flow is 200 L/min. Compared with conventional products, the volume is reduced by more than 40%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.