Abstract

The size of axial flow pumps used in drainage pump stations has recently decreased, and their rotation speeds have increased, causing an increase in the risk of cavitation. Therefore, to provide highly reliable pumps, it is important to understand the internal flow of pumps under cavitating conditions. In this study, high-speed camera measurements and computational fluid dynamics analysis were performed to understand the cavitation performance of an axial flow pump. The mechanism that causes the head to change as a result of cavitation under low net positive suction head values is shown to be the balance between the increasing angular momentum and the loss indicated by the changing streamlines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.