Abstract
The objective of this study was to develop an empirical equation for estimating the capillary rise in the saline-sodic soil area of Songnen Plain in China based on the Averianov formula. The capillary rise was observed under five controlled groundwater levels by lysimeters. Field experiment results indicated that capillary rise had close relationship with the groundwater table depth, soil moisture of 10–40 cm soil layer and leaf area index. These factors have been taken into account to develop the empirical equation for capillary rise simulation. The model parameters for Songnen Plain were derived by Levenberg–Marquardt and global optimization calculating method. The modeled capillary rise has a good agreement with the observed data (r 2 = 0.875). With the simulation model, the critical water table depth was identified as 2.5 m, indicating that soil secondary salinization will not occur when the water table depth is deeper than 2.5 m. Therefore, in the irrigation areas, groundwater table depth should be controlled to be higher than 2.5 m to prevent the occurrence of soil secondary salinization. The results from this research will provide useful information for the water sources management and soil secondary salinization control in Songnen Plain of China, one of the most serious saline-affected areas in the world.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.