Abstract

Three-dimensional lattice structures with high specific strength, specific stiffness and low apparent density, are widely employed across multiple engineering fields. Under uniaxial compressive loading, the lattice structure may experience local buckling or global buckling. This paper conducted a systematic parametric study of the various factors affecting the buckling behavior of multilayer pyramid lattice structures to investigate the mechanism of the two main instability modes, local and global buckling. It was found that the critical buckling load increases with the increase in the size of the unit cell and decreases with the increase in the total height of the structure for the same relative density. As the relative density increases, the buckling resistance of the lattice structure increases. It is possible to examine various buckling modes by varying the geometrical properties of the pyramid unit cell (slenderness ratio, rod inclination angle, cross-sectional size of strut connection parts). Finally, numerical simulations were performed to calculate the yield strength and buckling strength of the lattice structure under uniaxial compression load, in order to estimate the threshold relative density for structural buckling and yield failure. The results demonstrated that buckling failure should be considered for aluminum alloy pyramid lattice when the relative density is below 4.07%. This study provides design criteria for lattice structures dominated by buckling and offers ideas for improving the buckling capacity of truss-type lattice structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call