Abstract

In this paper, the bubble’s stability is studied in the process of preparing foam aluminum by powder metallurgy. In this work, carborundum particles, soot powder and carbon fiber are added into pure aluminum powder, respectively. The microstructure of cell wall of foam aluminum, the viscosity and surface tension of melt is investigated. It is discussed the bubble stability which is controlled through adding SiC particles, soot powder and carbon fiber, and the mechanism of bubble’s stability is analyzed. The experiment results showed that the homogeneity of bubble holes of foam aluminum is better than that which is obtained by adding SiC practical and carbon fiber into the raw materials. SEM images showed that SiC particles and carbon fiber distribute evenly on cell wall of foam aluminum. It means that during foaming a lot of SiC particles and carbon fiber distribute diffusively in liquid aluminum melted. It increases the viscosity of melt so that stability of bubble is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.