Abstract
SF 6 /N 2 mixed gas, as a typical binary mixed gas with synergistic effect, is a simple and effective SF 6 environmental protection measure. It has been gradually applied to gas-insulated power equipment such as GIS. In order to develop a mixed-gas 126 kV GIS disconnecting switch, breaking characteristics under typical operation conditions are carried out. A circuit breaking test for bus-transfor current was established, and a bus-transfor current breaking test was carried out. It was found that under different conditions, the arc time of the mixed gas was significantly longer than that of SF 6 . Under the condition of 30V/1600A, the arc time of 28% mixed gas is increased by about 29% compared with SF 6 . The arcing time of the mixed gas with 40% mixing ratio is similar. The arcing time will increase when the gas pressure decreases. The operation speed of the disconnecting switch has a small effect on the breaking. After 100 tests, the contactor was slightly ablated after the 30V/1600A test but still passed the test. However, the contactor was severely ablated under the 100V/1600A breaking condition and failed the test. A small capacitive current breaking test circuit was set up, and a small capacitive current breaking test was carried out. It is found that the mixing ratio, gas pressure, and switching operation speed have the same effect on the arcing time as the bus-transfor current breaking test. Compared with SF 6 , the breaking performance is significantly reduced. The arcing time of 28% mixed gas in the 126kV test is increased by about 25%. No insulation discharge occurred after 50 tests, and it was judged that the test passed. In summary, the breaking performance of the mixed gas is significantly lower than SF 6 , which will make the arcing time and the contactor ablation increase, and even the breaking failure. An improved method of adding copper-tungsten arcing contactor was proposed, after which the test sample was improved, and the type test was passed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.