Abstract

Enhancing containment capability and reducing weight are always great concerns in the design of casings. Ballistic tests can help to mitigate a catastrophic event after a blade out, yet taking time and costing money. A wise way is to hunt for a validated numerical simulation technology, through which the material dynamic behavior over the strain rate range in the ballistic tests should be represented and reasonable failure strain should be defined. The simulation results show that the validation of the numerical simulation technology based on the test data can accurately estimate the absorption energy, describe the physical process and failure mode during the penetration, as well as the failure mechanism. It is found that energy dissipation of projectiles is in manner of compression stage, energy conversion stage, and interactive scrap stage. An effect indicator is proposed, where the factors of critical velocity including impact orientation and mass of projectiles and thickness of casings are considered. The critical velocity presents a linear relation with the effect indicator, which implies the critical velocity obtained by the flat casing could underestimate the capability of the real casing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call