Abstract

Bacterial adhesion on material surfaces is a significant problem in many areas, especially on medical devices. Upon colonizing a surface, bacteria tend to form biofilms and become difficult to eradicate. A multistep process is involved in bacterial biofilm formation, including primary adhesion to material surface and accumulation of bacterial cells. Controlling the primary adhesion of bacteria is an efficient way to manage biofilms. This study focused on the primary adhesion of bacteria on a copolymer thin-film composed of 2-methacryloyloxyethyl phosphorylcholine (MPC), 3-methacryloxypropyl trimethoxysilane (MPTMSi), and 3-(methacryloyloxy) propyl-tris(trimethylsilyloxy) silane (MPTSSi), which has anti-biofouling and thickness and stiffness tunable properties. We modulated the thickness (5-90 nm) and stiffness of the thin-film via changing the polymer concentration in the coating solution (dip coating). All polymer thin-films inhibited Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa primary adhesions. Interestingly, S. aureus adhesion was affected by the thickness and/or stiffness of the thin-film. We conclude that the mechanical property of the thin-film is one of the influential factors determining bacterial adhesion. These findings would be of significance in designing antibacterial materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.