Abstract

In this paper, a new type of thin-walled energy absorbing structure filled with auxetic lattice structure has been proposed. The deformation mode and mechanical responses of the new filled tube under compression load have been studied through quasi-static compression experiment and numerical simulation. A theoretical model for predicting the average compression force has been established and verified with simulation analysis. The influences of the geometrical parameters in the compression performance of the filled tube have been studied. The results show that the failure mode of the filled tube under compression load is local buckling failure. Compared with the single thin-walled tube and the lattice structure, the filled tube has better compression resistance. Through parameter analysis, it is clear that the anti-compression property of the filled tube can be significantly improved by increasing the wall thickness of the cell rod and the angle of the lower support rod, which will provide an important reference for the anti-impact optimization design of the negative Poisson’s ratio lattice filled structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.