Abstract

Background: A large area of the maize production in Indo-Gangetic plains of India exposes alternative and combination of prolonged drought spells and heavy rainfall situation due to uncertainty of monsoon patterns. In such context, breeding for maize hybrids with cross-tolerant to both low and excess soil moisture stresses remain the ultimate alternative. Methods: Evaluation of 75 maize hybrids planted at Banaras Hindu University, India during the subsequent Rabi and Kharif seasons of 2017 and 2018, respectively. The hybrids were evaluated for acquiring information on inter-trait associations among yield and yield-related traits under different soil moisture regimes. The trials were planted in alpha-lattice design and managed stress was imposed and data recorded. Result: As our investigation was the evident of weak correlations among the traits studied, genotype × trait (GT) biplots are not advisable to select/ discard the genotypes under moisture stress conditions. The goodness of fit for GT biplots constructed under studied moisture conditions were almost poor because of fair to moderate correlations among the traits. To accomplish this problem of weak associations, genotype × yield × trait (GYT) technique was advisable to perform the precise selection of genotypes under studied environments. The investigation emphasized on accuracy and adequacy in implementing of GYT biplots for characterizing and selecting suitable hybrids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.