Abstract

Three ruthenium arene complexes, namely {[(η6-p-cymene)Ru(Cl)]2(dpb)}(PF6)2 (1), [(η6-p-cymene)Ru(dpb)Cl](PF6) (2) and [(η6-p-cymene) Ru(dpb)py](PF6) (3) (dpb = 2,3-bis(2-pyridyl)benzo-quinoxaline, py = pyridine), were synthesized and their antitumor properties were introduced. Complexes 1-3 were characterized by 1H NMR, MS, and elemental analysis. As a binuclear ruthenium structure, the absorption of metal ligand electron transfer (MLCT) of 1 extended to 700 nm. Complex 1 was significantly hydrolyzed under dark conditions. The cytotoxicity in vitro study showed that complexes 1 and 2 are more toxic to human lung cancer cells (A549) and human cervial cancer cells (Hela) than cisplatin. Moreover, there was almost no cross-resistance between complex 1-2 and cisplatin. Under the irradiation at 478 nm, complexes 1-3 all produced singlet oxygen (1O2), and the 1O2 quantum yield of complex 1 in PBS is the highest among complexes 1-3. Complex 1 also produced 1O2 under 600 nm light irradiation. DNA gel electrophoresis showed that 1 caused the photocleavage of plasmid DNA. The hydrolysis rate of complex 1 was accelerated under light (λ > 600 nm). And the phototoxicity of complex 1 to Hela cells under light (λ > 600 nm) was much greater than its dark toxicity, which may be due to its generation of 1O2 and the promotion of its hydrolysis under long-wave light irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.