Abstract

Angular distribution of a differential photoacoustic cross-section (DPACS) has been examined for various nonspherical axisymmetric particles. The DPACS as a function of measurement angle has been computed for spheroidal particles with varying aspect ratios and fitted with a tri-axes ellipsoid form factor model to extract shape parameters. Similar study has been carried out for normal and pathological red blood cells, and fitting has been performed with the tri-axes ellipsoid and finite cylinder form factor models to evaluate cellular morphology. It is found that an enhancement of the DPACS occurs as the surface area of the photoacoustic source normal to the direction of measurement is increased. It decreases as the thickness of the source along the same direction increases. For example, the DPACS for normal erythrocyte along the direction of symmetry is nearly 20 times greater than a pathological cell. Further, the first minimum appears slightly later (≈4°) for a healthy cell compared with that of a diseased cell. Shape information of spheroids can be precisely estimated by the first model. Both models provide accurate estimates of shape parameters for normal red blood cells (errors within 4%). It may be possible to assess cellular morphology from an angular profile of the DPACS using form factor models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call