Abstract
PurposeThe purpose of this paper is to propose a complex network model which can study the specified objects in a complex system within which the number of agents is fixed while the interactions and the outside environments are evolving with time.Design/methodology/approachThe complex network model is analyzed by the master equation method and the rigorous four‐step statistical test is applied to test whether the degree distribution in the real world fits power law or not.FindingsBy theoretical analysis, the vertex degrees of the model follow power law distribution p(k)∼k−2 which is different from that of the Barabási‐Albert model. By empirical research, the result shows that the citations of papers published in 2001 on the small‐world networks follow a power law distribution which is tested by the statistical test.Research limitations/implicationsThe small sample and short evolving time may cause some deviation from the theoretical expectation.Practical implicationsThis evolving complex network model with fixed number of vertices and the statistical test process for power‐law will have a great significance for the theoretical and empirical study on complex networks.Originality/valueThis paper presents a new model of evolving complex networks which can be used to analyze the specified objects in a dynamic system and a quantitative method for power law test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.