Abstract

In this study, a composition-gradient thin film was applied for the formation of intermediate layer of Ti seed layer for an stable electrode stack Ag metal layer. Various composition of Ag-Ti hetero metal layer were simultaneously deposited by using the sputtering process with Ti and Ag target, respectively. An intermediate layer was deposited at a gradient composition ratio such as 5:5 and 7:3. In addition, the optimal deposition conditions were evaluated by confirming the plasma codition such as density of plasma ion, plasma potential with the Langmuir Probe (Hiden ESPion). Flow rate, power, and composition ratio were optimized as variables for thin film structures of compositional gradient thin films. In addition, thin film samples were heat treated at 200 ℃, 300 ℃, and 400 ℃ to relieve the residual stress between the interface of laminated thin films. Under these conditions, a composition-gradient thin film was evaluated by XRD (X-Ray Diffraction, SmartLab Rigaku 9kW), SEM (Scanning Electron Microscope, Nova NanoSEM 450), and EDS (energy dispersive X-ray spectroscopy). As a result of the measurement, it was confirmed that interfacial diffusion occurred due to the composition gradient thin film. When the composition gradient intermediate layer was applied to thin film stack, the residual stress increased more than that of single thin film stack. However, after stress relief annealing, residual stress was dramatically decreased compared to single stack.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call