Abstract

In order to further reduce the aerodynamic drag of High-speed Electric Multiple Units (EMU), an active flow control drag reduction method combining air suction and blowing is proposed at the rear of the EMU train. A numerical calculation method based on realizable k-ε is used to investigate the aerodynamic drag characteristics of a three-car EMU with a speed of 400 km/h. The influence of different suction-blowing mass flow rates, the position and number of suction and blowing ports on the aerodynamic drag and surface pressure of the EMU tail are analyzed. The results demonstrate that suction and blowing at the tail reduce the pressure drag of EMU. And with the growth of air suction-blowing mass flow rate, the aerodynamic drag reduction rate of the tail car gradually increases, but the increment of drag reduction rate gradually decreases. Under the same mass flow rate of the suction and blowing, the closer the ports are to the upper and lower edges of the windscreen, the lower the pressure drag of the tail car is. At the same flow flux of air suction and blowing, the more the number of ports, the better the pressure drag reduction effect of the tail car. This study provides a reference for the next generation of EMU aerodynamic drag reduction and is of great significance for breaking through the limitations of traditional aerodynamic drag reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.