Abstract

In order to improve the static start-up problem of Savonius wind turbines, a Savonius wind turbine with a modified blade is proposed. It was obtained by twisting the half-cylindrical blades of the basic Savonius wind turbine by 70°. The aerodynamic performance of the wind turbine before and after the modification was compared. Firstly, the static torque coefficient of two wind turbines at different azimuth angles were obtained by means of three-dimensional numerical simulation. The static flow field around the wind turbine was analyzed. Then, the output power and speed characteristics of a spiral Savonius wind turbine under different incoming wind speeds were evaluated in the wind tunnel. The results show that, compared with the Savonius wind turbine with half-cylindrical blades, the spiral wind turbine could start at any azimuths in one rotation cycle. The reverse torque was eliminated. The static torque coefficient fluctuation range was reduced by 10%. The start-up performance was effectively improved. This investigation could provide guidance for the improvement of start-up characteristics of Savonius wind turbines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.