Abstract

Abstract Fuel injection systems have been one of the main focal points of engine research, particularly in Diesel engines, where the internal geometry, needle lift and flow behavior are known to affect the external spray an in turn completely determine the combustion process inside engines. Because of environmental regulation and the potential development of the more inefficient Otto engines, a lot of research efforts are currently focused into gasoline direct injection systems. GDi engines have the potential to greatly increase fuel economy and comply with pollutant and greenhouse gases emissions limits, although many challenges still remain. The current thesis studies in detail a modern type of GDi nozzle that was specifically developed for the international research group known as the Engine Combustion Network (ECN). With the objective of employing state-of-the-art techniques, this hardware has been used in a wide range of experimental facilities in order to characterize the internal flow and several geometrical and constructive aspects like needle lift; and assess how it relates to the effects seen external spray. For the internal flow characterization, the goal was to determine the nozzle geometry and needle displacement, to characterize the rate of injection and rate of momentum, and evaluate the near-nozzle flow. Some methodologies applied here have never been applied to a GDi injector before, and many have only been applied rarely. For the internal geometry, needle lift and near-nozzle flow, several advanced x-rays techniques were used at Argonne National Laboratory. For the rate of injection and rate of momentum measurements, the techniques available in CMT-Motores Termicos have been adapted from Diesel spray research and brought to multi-hole GDi injectors. Given the novelty of the techniques used, the particular methodologies and setups are discussed in detail. Despite the high turbulence of the flow, it was seen that the injector behaves consistently injection to injection, even when studying variation in individual holes. This is attributed to the repetitive behavior of the needle that was observed in the experiments. It was also observed that the stabilized flow has a high frequency variability that could not be explained by random movement of the needle, but rather by the particular design of the nozzle. The geometrical analysis done to eight, nominally equal nozzles, allowed a unique view into the construction of the nozzle and provided insights about the variability of key dimensions. The rate of injection measurements allowed to study the hydraulic response of the injector to the main variables like rail pressure, discharge pressure, fuel temperature and command signal duration. These measurements were combined with the rate of momentum measurements to study the low value of the discharge coefficient, that ultimately was attributed to the low needle lift and low L/D ratio of the orifices. On the other hand, the study of the external spray yielded the identification of very important phenomena specific to this particular hardware, the spray collapse. The extensive experimental campaigns featuring shadowgraph (Schlieren) and Diffused Back Illumination (DBI) visualization techniques allowed identifying and describing the macroscopic characteristics of the spray and the conditions under which the collapse occurs. The spray collapse engenders from a combination of the internal flow that creates plume interaction, and ambient conditions that promote air entrainment and evaporation. At moderate density and temperature levels the collapse develops, completely modifying the expected trends in the behavior of the plumes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.