Abstract
At present, applying a near-field optical microscope to photolithographic line segment fabrication can only obtain nanoscale line segments of equal cutting depths, and cannot result in 3D shape fabrication. This study proposes an innovative line segment fabrication model of near-field photolithography that adjusts an optical fiber probe's field distance to control the exposure energy density, and moreover constructs an exposure energy density analysis method of the innovative photolithographic line segment fabrication. During the exposure simulation process of the innovative line segment fabrication model of near-field photolithography, the near-field distance between the optical fiber probe and the photoresist surface increases gradually, whereas the exposure energy density distribution decreases gradually. As a result, the cutting depth becomes shallower and the full-width at half maximum (FWHM) increases. The results of this study can serve as a theoretical reference for developing advanced nanoscale near-field photolithography techniques, to which an important and groundbreaking contribution is made.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.