Abstract

The LaMnO3, La0.9Ce0.1MnO3 and La0.9Sr0.1MnO3 catalysts are synthesized using sugar agent, and the CO self-sustained combustion is investigated, where the catalytic performance is decided by temperature with CO conversions of 10% (T10), 50% (T50), and 90% (T90). The results show that self-sustaining combustion is successfully realized on the catalyst, and the order of activity decrease is as follows: La0.9Ce0.1MnO3 (with sugar) > La0.9Sr0.1MnO3 (with sugar) > LaMnO3 (with sugar) > LaMnO3 (without sugar) > La0.9Sr0.1MnO3 (without sugar) > La0.9Ce0.1MnO3 (without sugar). Combined with the results of XPS, H2-TPR, O2-TPD and CO-TPD techniques, the excellent activity of La0.9Ce0.1MnO3 (with sugar) can be attributed to the high content of Mn4+ ions and reactive oxygen vacancies enriched on the catalyst surface, sound low-temperature reduction, and uniform dispersion. Besides, in situ IR spectroscopy results indicate that the catalytic combustion of CO over manganese-based perovskite catalysts follows the L-H mechanism: the chemisorption of CO and O2 takes place to produce monodentate carbonates and bicarbonate species, which then decompose to yield CO2 release. The high-temperature stability test provides evidence that the La0.9Ce0.1MnO3 (with sugar) gives 100% CO conversion and that the activities remain almost unchanged after reaction for 12 h, where the temperature of catalyst bed reaches about 717 °C. The results obtained are helpful to accept this technology on efficient and clean energy utilization in iron and steel industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call