Abstract

Natural gas hydrate (NGH), a clean energy source with huge reserves in nature, and its safe and efficient exploitation fits perfectly with the UN Sustainable Development Goals (SDG-7). However, large-scale NGH decomposition frequently results in subsea landslides, reservoir subsidence, and collapse. In this work, in order to achieve safe and efficient exploitation of NGHs, the stability variation of different reservoir layers by depressurization/intermittent CO2/N2 injection (80:20 mol%, 50:50 mol%) was investigated using acoustic properties (P-wave velocity, elastic modulus), as well as reservoir subsidence under an overburden stress of 10 MPa. The P-wave velocity increased from 1282 m/s to 2778 m/s in the above-reservoir and from 1266 m/s to 2564 m/s in the below-reservoir, significantly increasing reservoir strength after CO2 hydrate formation. The P-wave velocity and elastic modulus in the top reconstructed reservoir were continually decreased by the shear damage of the overlying stress, while they remained stable in the bottom reconstructed reservoir during hydrate mining. However, due to superior pressure-bearing ability of the top CO2 hydrate reservoir, which was lacking in the bottom CO2 hydrate reservoir, the reservoir subsidence was relieved greatly. Despite the stiffness strength of reconstructed reservoir was ensured with CO2/N2 sweeping, the skeletal structure of CH4 hydrate reservoir was destroyed, and only the formation of CO2 hydrate could guarantee the stability of P-wave velocity and elastic modulus which was most beneficial to relieve reservoir subsidence. A large amount of CO2 was used in reservoir reconstruction and CH4 hydrate mining, which achieved the geological storage of CO2 (SDG-13). This work provided a new idea for safe and efficient NGHs mining in the future, and the application of acoustic properties served as a guide for the efficient construction of reconstructed reservoirs and offers credible technical assistance for safe exploitation of NGHs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.