Abstract

Gas explosion is one of the main disasters in coal mining. Plenty of coal gangue are generally distributed in the disaster areas in gob. Experiments were carried out to explore the propagation law of the gas explosion distributed by coal gangue. The variation characteristics of the overpressure, pressure rise rate, and flame shape with void fractions were analyzed. The results showed that the effect of the coal gangue on the explosion intensity changed from suppression to acceleration with the increase of void fraction, the flame front upstream blockage area changed from laminar state to turbulent divergent state, and a reverse flame was formed. When the void fraction of the coal gangue was 0.50–0.65, the maximum overpressure downstream of the blocked area were positively correlated with the void fraction and the critical suppression range was between 0.50 and 0.55. When the void fraction was lower than 0.50, the flame was quenched in the coal gangue, neither the flame nor the pressure could pass through the blocked area. It is helpful to guide the improvement of coal recovery process to avoid the expansion of the explosion impact in coalmine gob.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call