Abstract

The resin was synthesized by suspension polymerization of butyl methacrylate (BMA) with hydroxyethyl methacrylate (HEMA) and its swelling properties were studied. The chemical structure was analyzed by FTIR and NMR spectrometer. Additionally, thermal properties were determined by TG and DSC, respectively. Finally, the fibrous resin was prepared by gelation-spinning. Its dynamic mechanics performance was researched by DMA and surface morphology was observed by SEM. The results showed mass fraction of HEMA in monomer feed ratio was a main factor affecting saturated absorbency, absorptive rate, and the content ratio of the remaining resin, and the maximum gram absorbency of resin for various organic chemicals were 1.175 g for kerosene, 12.59 g for toluene, and 24.03 g for trichloroethylene respectively. Besides, intermolecular and intramolecular hydrogen bond formed, which was beneficial to form physical cross-link structure, but chemical cross-link structure between macromolecules could not be formed. Furthermore, mass fraction of HEMA in monomer feed ratio had an impact on dynamic mechanics performance and especially, segments movement of macromolecule was affected obviously. The temperature of initial decomposition and glass transition temperature increased with the increase of mass fraction of HEMA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.