Abstract

Some numerical studies were carried out on micrometer-sized rising bubble bouncing near a rigid boundary. Taking surface tension into consideration, the bubble motion could be solved using the potential flow theory. A correction should be made in Bernoulli equation because the pressure gradient was caused by the viscosity between the bubble and the wall. The numerical result agree well with the experimental data. Based on the fundamental phenomenon, we have studied the influence of characteristic parameter on bubble bouncing behavior, and the balanced shape due to the action of the wall. With the increase of the rising distance of the bubble, the distance of the bubble bouncing downward and the period of bouncing would increase. However, they would not change obviously when the rising distance is large enough. Surface tension has great effect on the dynamic behavior of the bubble. The bouncing period decreases when surface tension becomes large, but the bouncing distance will have an increase before it gradually decreases. Finally, the balanced shape of the bubble due to the wall effect can be mainly controlled by buoyance parameter and the Weber number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call