Abstract

As an important component in photoacoustic spectroscopy gas detection systems, the performance of the photoacoustic cavity directly affects the sensitivity and resolution of the system. Based on a study of photoacoustic cavity performance, a new type of arched photoacoustic cavity is proposed. Finite element simulation software is used for modeling. By comparing the influences of the position and radius of the central sphere, the length and radius of the resonant cavity, and the radius of the buffer chamber on the performance of the photoacoustic cavity, the optimal structural size of the arched photoacoustic cavity is determined. Compared to a traditional cylindrical photoacoustic cavity with the same size, and considering the thermal viscous acoustic loss, a thermal-acoustic coupling multiphysical field simulation of the two models is carried out. The acoustic pressure signal of the arched photoacoustic cavity is 6 times that of the cylindrical photoacoustic cavity, the resonant frequency increases by 300 Hz, and the quality factor is 2.6 times that of the cylindrical photoacoustic cavity. The performance of the arched photoacoustic cavity is significantly improved. A photoacoustic spectroscopy system for the detection of chloroform gas (CHCl3) is built based on an arched photoacoustic cavity. Detection experiments are carried out with different concentrations of chloroform. At room temperature (25 °C) and atmospheric pressure, the linear coefficient R2 is 0.9975, and the detection sensitivity is 0.28 ppm. The system has great practical value for the detection of chloroform gas in industrial and agricultural applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.