Abstract

The low surface activity of graphene oxide (GO) stemming from its large conjugated electronic structure can easily affect the dispersion behavior of GO-based polymer matrices. This significantly undermines the properties of the resulting composite materials. Therefore, in order to increase the GO surface activity for use in polymer-based composites, GO was modified using silane coupling agent which was then doped into polydimethylsiloxane (PDMS) polymer to prepare novel paints by sol–gel reaction strategy. The subsequent novel composite coatings based on PDMS/modified GO (mGO) were finally cured with tetraethoxysilane as the hardening agent in the presence of dibutyltin dilaurate catalyst. The effect of doping mGO into PDMS polymer was systematically studied using infrared spectroscopy, micro-Raman spectroscopy, TEM, SEM, XRD, TGA, mechanical test, thermal conductivity test, and the erosion resistance test. It was concluded that the phase compatibility between GO and PDMS was enhanced due to the new interconnecting chemical bonds brought about by the mGO in the composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call