Abstract

Transplanting trees with rhizospheric soil is an important way to facilitate tree survival in the process of landscaping and reforestation. Traditional way to prevent looseness of rhizospheric soil is forming soil balls around the roots with bags, boxes or rope wrapping, which is cumbersome, laborious and easy to break. This study is aimed to develop a new type of degradable environment-friendly polymer as soil consolidation agent to facilitate tree transplanting. In this paper, the KGM/CA/PVA ternary blending soil consolidation agent was prepared by using Konjac glucomannan (KGM), chitosan (CA) and polyvinyl alcohol (PVA) as raw materials. Through the verification and evaluation, the clay and sandy soil can be consolidated and formed into soil balls by the ternary blend adhesive, which was convenient for transportation. The preliminary application of the ternary blend adhesive in the transplanting process of sierra salvia, Japanese Spindle (Euonymus japonicus) and Juniperus sabina ‘Tamaricifolia’ confirmed that the application of soil consolidation agent can effectively solve the problem that the root ball of seedling is easily broken in the process of transplant. And the application of soil consolidation agent has no adverse effect on the growth of transplanted seedlings. The research and development of ternary blending soil consolidation agent and its preliminary application in seedling transplanting will provide a new solution to solve the problem of soil ball breakage in the process of seedling transplanting. This is an important stage in the development of new seedling transplanting technology. Therefore, the research and development of soil consolidation agent is of great significance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.