Abstract

Landslides are a kind of geological hazard with great destructive potential. When a landslide event occurs, a reliable landslide segmentation method is important for assessing the extent of the disaster and preventing secondary disasters. Although deep learning methods have been applied to improve the efficiency of landslide segmentation, there are still some problems that need to be solved, such as the poor segmentation due to the similarity between old landslide areas and the background features and missed detections of small-scale landslides. To tackle these challenges, a proposed high-resolution semantic segmentation algorithm for landslide scenes enhances the accuracy of landslide segmentation and addresses the challenge of missed detections in small-scale landslides. The network is based on the high-resolution network (HR-Net), which effectively integrates the efficient channel attention mechanism (efficient channel attention, ECA) into the network to enhance the representation quality of the feature maps. Moreover, the primary backbone of the high-resolution network is further enhanced to extract more profound semantic information. To improve the network’s ability to perceive small-scale landslides, atrous spatial pyramid pooling (ASPP) with ECA modules is introduced. Furthermore, to address the issues arising from inadequate training and reduced accuracy due to the unequal distribution of positive and negative samples, the network employs a combined loss function. This combined loss function effectively supervises the training of the network. Finally, the paper enhances the Loess Plateau landslide dataset using a fractional-order-based image enhancement approach and conducts experimental comparisons on this enriched dataset to evaluate the enhanced network’s performance. The experimental findings show that the proposed methodology achieves higher accuracy in segmentation performance compared to other networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.