Abstract
(Zr,Ti)CN, (Zr,Hf)CN and (Zr,Nb)CN coatings, in which Ti, Hf and Nb were added to ZrCN base compound, have been prepared by reactive magnetron sputtering. The coatings, with two different non-metal/metal ratios, were comparatively investigated in terms of elemental and phase composition, texture, surface morphology, hardness and friction performance. It has been shown that the films exhibit nanocomposite structures, consisting of a mixture of crystalline metal carbonitride and amorphous carbon. As compared with ternary ZrCN coatings, the quaternary coatings were found to exhibit superior mechanical and friction characteristics. In general, the films with higher non-metal content revealed finer morphologies, higher hardness and lower friction coefficient. Depending on the coating type and non-metal/metal ratio, the hardness values ranged from about 21 to 29 GPa, being higher than those of ZrCN reference films. The coefficients of friction varied from 0.2 to 0.5, the lowest values being obtained for the coatings with the highest non-metal content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.