Abstract
Zinc oxide (ZnO) and Ni-doped zinc oxide (ZnO:Ni) films are prepared by atom beam sputtering with an intent of growing transparent conducting oxide (TCO) material and understanding its physical properties. The crystalline phases of the films are identified by the grazing angle X-ray diffraction (GAXRD) technique. Thicknesses of the films are measured by ellipsometry. Chemical states of the elements present in the films are investigated by X-ray photoelectron spectroscopy (XPS), which indicates the presence of Ni in the ZnO environment in a divalent state. Average transmission across the ZnO:Ni film was determined to be ∼83% in the visible region, which is less than that (∼90%) of undoped ZnO films. The resistivity measured by van der Pauw technique of the ZnO:Ni film (∼9×10-3 Ω cm) is two orders of magnitude smaller as compared to its undoped counterpart (1 Ω cm). For ZnO:Ni film an average carrier concentration of ∼1.4×1019 cm-3 was observed by Hall measurements. Two important mechanisms reported in the literature viz. influence of d–d transition bands and electron scattering from crystallites/grains are discussed as the possible causes for the increase in conductivity on Ni doping in ZnO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.