Abstract

Two recent trends in engine oil formulation are a progressive reduction in phosphorus concentration so as to reduce its impact on the de-NO x catalyst, and an increase in dispersant concentration to control the level of lubricant viscosity increase over extended drain intervals. Unfortunately, both of these trends make it more difficult to generate and retain effective antiwear films on lubricated surfaces and both thus strengthen the need to understand the processes by which antiwear films are formed, and removed, during rubbing. This article and its companion outline a study of the kinetics of antiwear film growth and removal. In Part I, a test method for monitoring antiwear film thickness during rolling/sliding is described and employed to explore how various factors, including operating temperature, antiwear additive type and concentration, and the presence of dispersant, influence both the formation and removal of the tribofilms formed by the antiwear additive zinc dialkyldithiophosphate (ZDDP). Part II then analyzes the obtained results to derive a kinetic model of ZDDP film formation and removal (Fujita, et al. [1]. Presented at the STLE Annual Meeting in Toronto, Ontario, Canada May 17-20, 2005 Review led by Elaine Yamaguchi

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.