Abstract

Wang, X.; Song, B.; Qian, Y., and Lao, J., 2020. Study of wind-induced vibration of a high-rise and thin-walled steel tower. In: Yang, D.F. and Wang, H. (eds.), Recent Advances in Marine Geology and Environmental Oceanography. Journal of Coastal Research, Special Issue No. 108, pp. 78–82. Coconut Creek (Florida), ISSN 0749-0208.There are many high-rise and thin-walled structures in the coastal environment. These structures easily produce vibrations under the action of wind load. Thus, it is necessary to study the wind-induced vibration response of the steel tower. The AR model method is used to simulate the natural pulsating wind velocity spectrum in different return periods. In addition, the wind-induced vibration responses of the integrated steel tower are successfully calculated using a numerical wind tunnel method. The reliability of the numerical method is verified by onsite monitoring. The results show that the responses of displacement amplitude gradually increase along with height. The larger the wind velocity, the larger the displacement response of the structure. The maximum displacement does not exceed the limit for displacement of the structure. The stress decreases along with the height, and there is a mutation of stress at the position of the variable cross-section. The greater the wind velocity, the higher the stress. Therefore, for wind resistance evaluation of this steel tower, the bottom and variable cross-sections should be controlled by stress and the top should be controlled by displacement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call